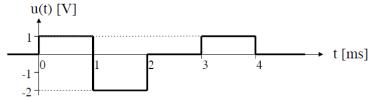
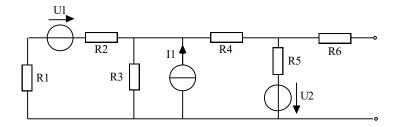

Ex.1 Capacité: courant et tension


Représenter le courant i(t) à travers une capacité de $C = 100 \ \mu \, F$ aux bornes de laquelle est appliquée la tension u(t) ci-dessous.

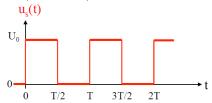
Représenter aussi la puissance instantanée absorbée p(t) et calculer l'énergie totale absorbée.

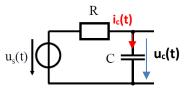
Ex.2 Inductance: courant et tension


Représenter le courant i(t) à travers une inductance L = 1 mH aux bornes de laquelle est appliquée la tension u(t) cidessous, sachant que ce courant est initialement nul.

Représenter aussi la puissance instantanée absorbée p(t) et calculer l'énergie totale absorbée.

Ex.3 Equivalence Thévenin-Norton


Déterminer le schéma équivalent de Thévenin et Norton du circuit ci-dessous :



 $R1 = R2 = R4 = 1 \text{ K}\Omega$, $R6 = 4 \text{ K}\Omega$, $R3 = R5 = 2 \text{ K}\Omega$, U1 = U2 = 2 V, I1 = 2 mA

Ex.4 Réponse d'un circuit RC passe-bas à un signal carré

Déterminer la réponse $u_c(t)$ et $i_c(t)$ du circuit ci-dessous à un signal carré périodique et esquisser u(t) lorsque $T \gg RC$, $T \approx 2 \cdot RC$, $T \ll RC$.

On ne s'occupe pas du régime transitoire à l'enclenchement. On ne s'intéresse qu'au régime établi, comme si $u_s(t)$ était présent depuis $t=-\infty$.